Generalized Framework of OKID for Linear State-Space Model Identification
نویسندگان
چکیده
This paper presents a generalization of observer/Kalman filter identification (OKID). OKID is a method for the simultaneous identification of a linear dynamical system and the associated Kalman filter from input-output measurements corrupted by noise. OKID was originally developed at NASA as the OKID/ERA algorithm. Recent work showed that ERA is not the only way to complete the OKID process and paved the way to the generalization of OKID as an approach to linear system identification. As opposed to other approaches, OKID is explicitly formulated via state observers providing an intuitive interpretation from a control theory perspective. The extension of the OKID framework to more complex identification problems, including nonlinear systems, is also discussed.
منابع مشابه
Dynamic Nonlinear System Identification Using a Wiener-Type Recurrent Network with OKID Algorithm
This paper presents a novel Wiener-type recurrent neural network with the observer/Kalman filter identification (OKID) algorithm for unknown dynamic nonlinear system identification. The proposed Wiener-type recurrent network resembles the conventional Wiener model that consists of a dynamic linear subsystem cascaded with a static nonlinear subsystem. The novelties of our approach include: (1) t...
متن کاملAn On-Line Tracker for a Stochastic Chaotic System Using Observer/Kalman Filter Identification Combined with Digital Redesign Method
This is the first paper to present such a digital redesign method for the (conventional) OKID system and apply this novel technique for nonlinear system identification. First, the Observer/Kalman filter Identification (OKID) method is used to obtain the lower-order state-space model for a stochastic chaos system. Then, a digital redesign approach with the high-gain property is applied to improv...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملA New Input Constrained Quadratic Tracker for an Unknown Sampled-Data System with an Input to Output Direct Transmission Term
A new quadratic digital tracker for efficient tracking control of an unknown sampled-data system with a direct transmission term from an input to output and subject to input constraints is proposed in this paper. First, the observer/Kalman filter identification (OKID) method is utilized to identify an appropriate (low-) order state-space innovation model with a feed-through term, equivalent to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015